1,196 research outputs found

    Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Get PDF
    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed

    Dynamic blade loading in the ERDA/NASA 100 kW and 200 kW wind turbines

    Get PDF
    Dynamic blade loads, including aerodynamic, gravitational, and inertial effects, are presented for two large horizontal-axis wind turbines: the ERDA-NASA 100 kW Mod-0 and 200 kw Mod-0A wind power systems. Calculated and measured loads are compared for an experimental Mod-0 machine in operation. Predicted blade loads are also given for the higher power Mod-0A wind turbine now being assembled for operation as part of a municipal power plant. Two major structural modifications have been made to the Mod-0 wind turbine for the purpose of reducing blade loads. A stairway within the truss tower was removed to reduce the impulsive aerodynamic loading caused by the tower wake on the downwind rotor blades. Also, the torsional stiffness of the yaw drive mechanism connecting the turbine nacelle to the tower was doubled to reduce rotor-tower interaction loads. Measured reductions in load obtained by means of these two modifications equaled or exceeded predictions

    Práticas de conservação de solos sob pastagens para Mato Grosso do Sul: revisão bibliográfica.

    Get PDF
    Solos de Mato Grosso do Sul. Degradação. Práticas de conservação do solo em pastagens.bitstream/item/135511/1/DOC-54.pd

    Sistemas de manejo do solo e de rotação/sucessão sobre o rendimento e outras características agronômicas de trigo.

    Get PDF
    bitstream/CNPT-2010/40576/1/p-co211.pd

    Mangosteen Extract Shows a Potent Insulin Sensitizing Effect in Obese Female Patients: A Prospective Randomized Controlled Pilot Study.

    Get PDF
    There is a widely acknowledged association between insulin resistance and obesity/type 2 diabetes (T2DM), and insulin sensitizing treatments have proved effective in preventing diabetes and inducing weight loss. Obesity and T2DM are also associated with increased inflammation. Mangosteen is a tropical tree, whose fruits—known for their antioxidant properties—have been recently suggested having a possible further role in the treatment of obesity and T2DM. The objective of this pilot study has been to evaluate safety and efficacy of treatment with mangosteen extract on insulin resistance, weight management, and inflammatory status in obese female patients with insulin resistance. Twenty-two patients were randomized 1:1 to behavioral therapy alone or behavioral therapy and mangosteen and 20 completed the 26-week study. The mangosteen group reported a significant improvement in insulin sensitivity (homeostatic model assessment-insulin resistance, HOMA-IR −53.22% vs. −15.23%, p = 0.004), and no side effect attributable to treatment was reported. Given the positive preliminary results we report and the excellent safety profile, we suggest a possible supplementary role of mangosteen extracts in the treatment of obesity, insulin resistance, and inflammation

    Institutional changes required to support CS in RPOs

    Get PDF
    To better support the adoption of Citizen Science (CS) as research methodology, institutional transformations in the majority of Research Performing Organizations (RPOs) are still required. The EU funded project TIME4CS aims at supporting such institutional transformations through the implementation of concrete actions triggering institutional changes and embedding, in turn, CS within research institutions. Here we present the concept of institutional roadmaps and the reflection tool designed to support RPOs in designing those concrete actions to stimulate institutional changes described in the personalized roadmaps

    Insight into the Charge Density Wave Gap from Contrast Inversion in Topographic STM Images

    Get PDF
    Charge density waves (CDWs) are understood in great detail in one dimension, but they remain largely enigmatic in two-dimensional systems. In particular, numerous aspects of the associated energy gap and the formation mechanism are not fully understood. Two long-standing riddles are the amplitude and position of the CDW gap with respect to the Fermi level ( E F ) and the frequent absence of CDW contrast inversion (CI) between opposite bias scanning tunneling microscopy (STM) images. Here, we find compelling evidence that these two issues are intimately related. Combining density functional theory and STM to analyze the CDW pattern and modulation amplitude in 1 T − TiSe 2 , we find that CI takes place at an unexpected negative sample bias because the CDW gap opens away from E F , deep inside the valence band. This bias becomes increasingly negative as the CDW gap shifts to higher binding energy with electron doping. This study shows the importance of CI in STM images to identify periodic modulations with a CDW and to gain valuable insight into the CDW gap, whose measurement is notoriously controversial

    Evidence of Rapid Phenocryst Growth of Olivine During Ascent in Basalts From the Big Pine Volcanic Field: Application of Olivine‐Melt Thermometry and Hygrometry at the Liquidus

    Full text link
    The Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting Fe2+‐MgKD(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT (=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔT for all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings.Plain Language SummaryBasaltic lavas are a window into their mantle source regions, which is why it is important to determine their temperatures and water contents. In this study, a new approach that allows these two parameters to be quantified is demonstrated for basalts from the Big Pine volcanic field, CA. They were targeted because many contain chunks of dense mantle rocks, which precludes storage in a crustal magma chamber and points to direct ascent from the mantle to the surface along fractures. Two hypotheses are proposed, tested, and shown to be viable in this study: (1) olivine crystallized in the basalts during ascent, and (2) the most Mg‐rich olivine analyzed in each basalt represents the first olivine to grow during ascent. This enables the most Mg‐rich olivine to be paired with the whole‐rock composition in the application of olivine‐melt thermometry and hygrometry. The results match those from published, independent studies. The success of this approach paves the way for the attainment of large, high‐quality data sets for basalts from a wide variety of tectonic settings. This, in turn, may allow global variations in mantle temperature and volatile content to be mapped in greater detail and better understood.Key PointsRapid phenocryst growth occurs during ascent in Mg‐rich basalts (some carry mantle xenoliths) from the Big Pine volcanic field, CAThe most Mg‐rich olivine can be paired with the whole‐rock composition to apply olivine‐melt thermometry/hygrometry at the liquidusLarge, high‐quality data sets on the temperature and water content of basalts from various tectonic settings can be obtained by this methodPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/3/ggge22329-sup-0001-2020GC009264-SI.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/2/ggge22329.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/1/ggge22329_am.pd

    Reactive Oxygen Species in Macrophages: Sources and Targets

    Get PDF
    Reactive oxygen species (ROS) are fundamental for macrophages to eliminate invasive microorganisms. However, as observed in nonphagocytic cells, ROS play essential roles in processes that are different from pathogen killing, as signal transduction, differentiation, and gene expression. The different outcomes of these events are likely to depend on the specific subcellular site of ROS formation, as well as the duration and extent of ROS production. While excessive accumulation of ROS has long been appreciated for its detrimental effects, there is now a deeper understanding of their roles as signaling molecules. This could explain the failure of the "all or none" pharmacologic approach with global antioxidants to treat several diseases. NADPH oxidase is the first source of ROS that has been identified in macrophages. However, growing evidence highlights mitochondria as a crucial site of ROS formation in these cells, mainly due to electron leakage of the respiratory chain or to enzymes, such as monoamine oxidases. Their role in redox signaling, together with their exact site of formation is only partially elucidated. Hence, it is essential to identify the specific intracellular sources of ROS and how they influence cellular processes in both physiological and pathological conditions to develop therapies targeting oxidative signaling networks. In this review, we will focus on the different sites of ROS formation in macrophages and how they impact on metabolic processes and inflammatory signaling, highlighting the role of mitochondrial as compared to non-mitochondrial ROS sources
    corecore